\qquad

Multiple Choice
Identify the choice that best completes the statement or answers the question.
\qquad 1. Write the ordered pairs for the relation. Find the domain and range.

a. $\{(5,-2),(2,-1),(1,0),(2,1),(5,2)\} ;$ domain: $\{-2,-1,0,1,2\}$; range: $\{1,2,5\}$
b. $\{(-2,5),(-1,2),(0,1),(1,2),(2,5)\}$; domain: $\{-2,-1,0,1,2\}$; range: $\{1,2,5\}$
c. $\{(-2,5),(-1,2),(0,1),(1,2),(2,5)\}$; domain: $\{1,2,5\}$; range: $\{-2,-1,0,1,2\}$
d. $\{(5,-2),(2,-1),(1,0),(2,1),(5,2)\} ;$ domain: $\{1,2,5\}$; range: $\{-2,-1,0,1,2\}$
\qquad 2. For $f(x)=-2 x+6$, find $f(3)$.
a. 12
b. -12
c. 0
d. 16
\qquad 3. Suppose $f(x)=4 x-2$ and $g(x)=-2 x+1$.

Find the value of $f(3)+g(5)$.
a. 1
b. 21
c. 11
d. 14
\qquad 4. Identify the key features of the given graph.

a. increasing, minimum ($3,-5$); x-intercepts $(-2,0)((8,0)$, y-intercept $((0,-2)$
c. decreasing, no x-intercepts, y-intercept $(0,9)$, maximum
b. increasing, max $(5,-3)$, x-int $(0,-2)(0,8)$; d. linear function y-int (2, 0)
\qquad 5. Identify the key features of the given graph.

a. increasing, minimum ($3,-5$); x-intercepts
c. absolute value function
$(-2,0)((8,0), y$-intercept $((0,-2)$
b. decreasing, no x-intercepts, y-intercept $(0,3)$, maximum $(1,-3)$
d. decreasing; max $((1,3)$; x-int $(-4,0)(6,0)$; y-int (0, 2.9)
6. Identify the key features of the given graph.

a. increasing, minimum $(3,-5)$; x-intercepts $(3,0)$, y-intercept $((0,-3)$
b. increasing; no max/min; x-int (3, 0); y-int $(0,-3)$
c. quadratic function
d. increasing; max $((1,3)$; x-int $(-4,0)(6,0)$; y-int (0, 2.9)
\qquad 7. Define the domain and range for the given graph.

a. domain: $5 \leq x \leq 5$
c. domain: $3 \leq x \leq-1$
range: $-5 \leq y \leq 4$
b. domain: $-1 \leq x \leq 3$
d. domain: $-5 \leq x \leq 4$
range: $-2 \leq y \leq 3$
\qquad 8. Define the domain and range for the given graph.

a. domain: $(0,0)$
c. domain: $-2 \leq x \leq 8$
range:(-3,2)
range: $-2 \leq y \leq 1$
b. domain: $-3 \leq y \leq 4$
d. domain: $-3 \leq x \leq 2$
range: $-4 \leq y \leq 6$
9. Define the domain and range for the given graph.

a. domain: $-6 \leq x \leq 6$
c. domain: $(0,0)$
range: $-3 \leq y \leq 3$
range:(-3,2)
b. domain: $-3 \leq x \leq 2$
d. domain: $-3 \leq y \leq 4$
range: $-5 \leq x \leq 2$
10. How will the graph of $\mathrm{y}=|\mathrm{x}-3|$ look different from $\mathrm{y}=|\mathrm{x}|$?
a. slides right 3 units
c. opens down
b. shifts down 3 units
d. slides left 3 units
11. How will the graph of $y=\sqrt{x}-5$ look different from $y=\sqrt{x}$?
a. opens down
c. shifts up 5 units
b. slides right 5 units
d. shifts down 5 units
12. How will the graph of $y=-x^{2}$ look different from $y=x^{2}$?
a. slides down 2 units
c. appears to be wider
b. appears more narrow
d. reflects across x-axis
\qquad 13. How will the graph of $y=\frac{1}{3} x$ look different from $y=x$?
a. reflects across x -axis
c. slides right 3
b. steeper, faster rate
d. flatter, slower rate
14. Which of the following is the inverse of $y=3 x+21$
a. $y=\frac{1}{7} x+3$
b. $y=\frac{x}{3}-7$
c. $y=7 x-3$
d. $y=-3 x-21$
15. Which of the following is the inverse of $y=-5 x+20$
a. $y=5 x-20$
b. $y=15 x+3$
c. $y=-\frac{1}{5} x+4$
d. $y=\frac{x}{5}-25$
16. Which of the following is the inverse of $y=x^{2}-7$
a. $y=\sqrt{x+7}$
b. $y=\sqrt{x}+3.5$
c. $y=-x^{2}+7$
d. $y=7 x-x^{2}$

Matching - For each equation write the NAME of the function family to which it belongs.

a. Absolute Value
e. Quadratic
b. Cubic
f. Radical
c. Exponential
g. Rational
d. Linear
h. Step
17. $y=3|x|+4$
18. $y=\sqrt{x+4}$
19. $y=\frac{15}{x}$
20. $y=3[x]+5$
21. $y=2 \cdot 3^{x}$
22. $y=-4 x+3$
23. $y=5 x^{2}-1$
24. $y=4 x^{3}-5$

For each \#17-24. Sketch the shape of the graph.

Short Answer

33. Is the relation $\{(-3,-2),(-2,-2),(5,4),(5,0),(-1,5)\}$ a function? Explain.
34. Is the relation $\{(3,-5),(-5,-1),(-3,-4),(-4,1),(0,-4)\}$ a function? Explain.
35. Describe the vertical-line test for a graph and tell how it can determine whether a graph represents a function.
